Optimal bounds for the first Seiffert mean in terms of the convex combination of the logarithmic and Neuman-Sándor mean

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal bounds for Neuman-Sándor mean in terms of the convex combination of the logarithmic and the second Seiffert means

In the article, we prove that the double inequality [Formula: see text] holds for [Formula: see text] with [Formula: see text] if and only if [Formula: see text] and [Formula: see text], where [Formula: see text], [Formula: see text] and [Formula: see text] denote the Neuman-Sándor, logarithmic and second Seiffert means of two positive numbers a and b, respectively.

متن کامل

Optimal Bounds for Neuman–sándor Mean in Terms of the Convex Combination of Logarithmic and Quadratic or Contra–harmonic Means

In this article, we present the least values α1 , α2 , and the greatest values β1 , β2 such that the double inequalities α1L(a,b)+(1−α1)Q(a,b) < M(a,b) < β1L(a,b)+(1−β1)Q(a,b) α2L(a,b)+(1−α2)C(a,b) < M(a,b) < β2L(a,b)+(1−β2)C(a,b) hold for all a,b > 0 with a = b , where L(a,b) , M(a,b) , Q(a,b) and C(a,b) are respectively the logarithmic, Neuman-Sándor, quadratic and contra-harmonic means of a ...

متن کامل

Optimal Lower Generalized Logarithmic Mean Bound for the Seiffert Mean

Ying-Qing Song, Wei-Mao Qian, Yun-Liang Jiang, and Yu-Ming Chu 1 School of Mathematics and Computation Sciences, Hunan City University, Yiyang, Hunan 413000, China 2 School of Distance Education, Huzhou Broadcast and TV University, Huzhou, Zhejiang 313000, China 3 School of Information & Engineering, Huzhou Teachers College, Huzhou, Zhejiang 313000, China Correspondence should be addressed to Y...

متن کامل

Sharp Bounds for Seiffert Mean in Terms of Contraharmonic Mean

and Applied Analysis 3 2. Proof of Theorem 1.1 Proof of Theorem 1.1. Let λ 1 √ 4/π − 1 /2 and μ 3 √3 /6. We first proof that the inequalities T a, b > C λa 1 − λ b, λb 1 − λ a , 2.1 T a, b < C ( μa ( 1 − μb, μb 1 − μa 2.2 hold for all a, b > 0 with a/ b. From 1.1 and 1.2 we clearly see that both T a, b and C a, b are symmetric and homogenous of degree 1. Without loss of generality, we assume th...

متن کامل

Optimal Convex Combination Bounds of Seiffert and Geometric Means for the Arithmetic Mean

We find the greatest value α and the least value β such that the double inequality αT (a,b) + (1−α)G(a,b) < A(a,b) < βT (a,b) + (1− β)G(a,b) holds for all a,b > 0 with a = b . Here T (a,b) , G(a,b) , and A(a,b) denote the Seiffert, geometric, and arithmetic means of two positive numbers a and b , respectively. Mathematics subject classification (2010): 26E60.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Inequalities

سال: 2018

ISSN: 1846-579X

DOI: 10.7153/jmi-2018-12-27